The Euclidean Algorithm

Math 31 - Topics in Algebra

This is a summary of the important definitions and results associated to the Euclidean algorithm, along with examples of the algorithm in action.

Theorem 1 (Division algorithm). Let n and m be integers, with $m>0$. Then there exist integers q and r, with $0 \leq r \leq n-1$, such that

$$
n=q m+r
$$

Definition 1. - We say that an integer m divides an integer n if there exists $c \in \mathbb{Z}$ such that $n=c m$.

- The greatest common divisor of a and $b, \operatorname{gcd}(a, b)$, is the largest positive integer which divides both a and b.
- We say that a and b are relatively prime if $\operatorname{gcd}(a, b)=1$.

Euclidean algorithm: Given integers n and m (suppose that $m<n$), gcd (n, m) can be computed as follows:

1. Use the Division Algorithm to write

$$
n=q_{0} m+r_{0} .
$$

2. Apply the Division Algorithm again to write

$$
m=q_{1} r_{0}+r_{1},
$$

i.e., to obtain a new quotient and remainder.
3. Continue this process until you obtain a remainder of zero. The previous (nonzero) remainder is $\operatorname{gcd}(n, m)$.

Theorem 2. Let $n, m \in \mathbb{Z}$. There exist integers x and y such that

$$
\operatorname{gcd}(n, m)=n x+m y .
$$

Example 2. Find $\operatorname{gcd}(105,81)$.
Solution. We divide each remainder into the previous divisor:

$$
\begin{aligned}
105 & =1 \cdot 81+24 \\
81 & =3 \cdot 24+9 \\
24 & =2 \cdot 9+6 \\
9 & =1 \cdot 6+3 \\
6 & =2 \cdot 3+0
\end{aligned}
$$

We've reached a remainder of 0 , so we stop. The last nonzero remainder is 3 , so $\operatorname{gcd}(105,81)=3$.

Example 3. Finding gcd(343, 210).
Solution. Run through the Euclidean algorithm until we hit 0:

$$
\begin{aligned}
343 & =1 \cdot 210+133 \\
210 & =1 \cdot 133+77 \\
133 & =1 \cdot 77+56 \\
77 & =1 \cdot 56+21 \\
56 & =2 \cdot 21+14 \\
21 & =1 \cdot 14+7 \\
14 & =2 \cdot 7+0
\end{aligned}
$$

Then we see that $\operatorname{gcd}(343,210)=7$.

